Basic principles on which Kepler Telescope works to find Exoplanets


One of the great problems in the search for exoplanets is detecting the darn things. Most are simply too small and too far away to be observed directly. Our Earth-based telescopes can’t resolve a faraway planet as a dot separate from its host star. Luckily, astronomers have other means at their disposal, and they all call for sophisticated telescopes armed with photometers (a device that measures light), spectrographs and infrared cameras.

The first method, known as the wobble method, looks for changes in a star’s relative velocity caused by the gravitational tug of a nearby planet. These tugs cause the star to surge toward Earth and then away, creating periodic variations that we can detect by analyzing the spectrum of light from the star. As it surges toward Earth, its light waves are compressed, shortening the wavelength and shifting the color to the blue side of the spectrum. As it surges away from Earth, its light waves spread out, increasing the wavelength and shifting the color to the red side of the spectrum. Larger planets intensify the wobble of their parent stars, which is why this technique has been so efficient at finding gas giants several times larger than Earth.

What’s one thing that all planets can do well? Block light. If a planet’s orbit crosses between its parent star and Earth, it will block some of the light and cause the star to dim. Astronomers call this a transit, and the related planet-hunting technique the transit method. Telescopes equipped with sensitive photometers can easily discern large planets, but they can also catch even the slight dimming caused by an Earth-sized object.

Finally, some astronomers have been turning to a technique known as microlensing. Microlensing occurs when one star passes precisely in front of another star. When this happens, the gravity of the foreground star acts like a magnifying lens and amplifies the brightness of the background star. If a planet orbits the foreground star, its additional gravity intensifies the amplification effect. This handily reveals the planet, which would otherwise be invisible to other detection techniques.

Posted on January 15, 2013, in General Studies. Bookmark the permalink. 2 Comments.

  1. If want to know more about Red Dwarf stars (M Dwarf) and their relation to Earth like habitable zones just go through this link.

    http://www.astrobio.net/interview/1694/m-dwarfs-the-search-for-life-is-on

  2. While the above are general exoplanet hunting methods, Kepler seems to employ only Transit method, as given in FAQs of Kepler mission NASA website.

    http://kepler.nasa.gov/Mission/faq/

    How will Kepler detect planets?
    The Kepler Mission is designed to detect planets as they pass in front of their stars which causes a tiny dip in the stars’ light. See Occultation-Graph animation (QuickTime, 1 MB).

    Kepler will look at just one large area of the sky in the constellations Cygnus and Lyra. Over the course of the mission, the spacecraft will simultaneously measure the variations in the brightness of more than 100,000 stars every 30 minutes, searching for the tiny “winks” in light output that happen when a planet passes in front of its star. The effect lasts from about an hour to about half a day, depending on the planet’s orbit and the type of star. The mission is designed to detect these changes in the brightness of a star when a planet crosses in front of t, or “transits the star.” This is called the “transit method” of finding planets. Transits are only seen when a star’s planetary system is nearly perfectly aligned with our line of sight. For a planet in an Earth-size orbit, the chance of it being aligned to produce a transit is less than 1%.

Leave a comment